HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels.
نویسندگان
چکیده
The maintenance of the resident adult neural stem/progenitor cell (NSPC) pool depends on the precise balance of proliferation, differentiation, and maintenance of the undifferentiated state. Identifying the mechanisms that regulate this balance in adult hippocampal NSPCs can provide insight into basic stem cell self-renewal principles important for tissue homeostasis and preventing tumor formation. Pharmacological inhibition of histone deacetylases (HDACs), a class of histone-modifying enzymes, have promising effects in cancer cells, yet the specific roles of individual HDACs in stem cell proliferation is unclear. Here using conditional KO (cKO) mice and in vitro cell culture, we show that histone deacetylase 3 (HDAC3) is required for the proliferation of adult NSPCs. Detailed cell cycle analysis of NSPCs from Hdac3 cKO mice reveals a defect in cell cycle progression through the gap 2/mitosis (G2/M) but not the S phase. Moreover, HDAC3 controls G2/M phase progression mainly through posttranslational stabilization of the G2/M cyclin-dependent kinase 1 (CDK1). These results demonstrate that HDAC3 plays a critical role in NSPC proliferation and suggest that strategies aimed at pharmacological modulation of HDAC3 may be beneficial for tissue regeneration and controlling tumor cell growth.
منابع مشابه
Filamin a regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation.
Cytoskeleton-associated proteins play key roles not only in regulating cell morphology and migration but also in proliferation. Mutations in the cytoskeleton-associated gene filamin A (FlnA) cause the human disorder periventricular heterotopia (PH). PH is a disorder of neural stem cell development that is characterized by disruption of progenitors along the ventricular epithelium and subsequent...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 37 شماره
صفحات -
تاریخ انتشار 2014